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The structures of two crystals have been solved using a new iterative phasing

method. The iterative phasing algorithm is developed from the `charge-¯ipping'

method proposed by OszlaÂnyi & SuÈ to [Acta Cryst. (2004), A60, 134±141].

Positivity and point-atom constraints are incorporated within this extremely

simple and effective algorithm by ¯ipping (sign reversal) of less-positive density

values during the iterations. Convergence is reliably achieved and the two

structures were solved. This structure solution method does not require

information on atomic scattering factors or symmetry. Heavy atoms can be

distinguished from light ones by their charge-density values.

1. Introduction

The phase problem of X-ray crystallography can usually be

solved because phase information, which cannot be directly

measured, is encoded in the diffracted intensity or Fourier

moduli. For diffraction from crystals, the positivity constraint

(known sign of charge density) and atomicity constraint (that

the density consists of a sum of point-like atoms, between

which the density is approximately zero) form the basis of ab

initio (direct methods) phase-determination methods, e.g.

Karle±Hauptman determinants for structure factors, which are

Fourier transforms of a positive electron density (Karle &

Hauptman, 1950). An important step in utilizing atomicity was

taken by Sayre (1952) and Hauptman & Karle (1953) in their

probabilistic analysis of structure factors. For non-periodic

scatterers, the iterative Gerchberg±Saxton±Fienup hybrid

input±output algorithm, (referred to here as HiO) (Gerchberg

& Saxton, 1972; Fienup, 1982) provides another practical

method for phase retrieval from `over-sampled' diffraction

data. (In its original form, the Gerchberg±Saxton algorithm

required knowledge of both image and diffraction pattern

intensities, from which complex image and diffraction pattern

were sought by iteration). Oversampling, which is not possible

for three-dimensional crystals, normally requires a known

support, or estimate of the object boundary, outside which the

density is known to be zero. For weakly scattering (real)

objects (without multiple scattering or absorption), the

Fourier modulus constraint in reciprocal space and compact

support constraint in real space have been found suf®cient

for convergence in simulations and experiments with X-rays

(Miao et al., 1999; Miao & Sayre, 2000; He et al., 2003), laser

light and coherent electrons in transmission electron micros-

copy (TEM) (Weierstall et al., 2001). The ®rst atomic resolu-

tion image of a carbon nanotube was recently obtained by

applying this method to the electron nanodiffraction pattern

from a single nanotube (Zuo et al., 2003). More recently, the

need for knowledge of the object shape has been eliminated

with the development of the `Shrinkwrap' variant of the HiO

algorithm, which obtains the support from the known auto-

correlation function of the object, and improves this iteratively

within HiO (Marchesini et al., 2003). All these methods have

much in common with the density-modi®cation and solvent-

¯attening (Wang, 1985) approaches of crystallography. The

direct application of the HiO iterative algorithm in crystal-

lography is possible only if it is accompanied by other known

constraints, such as non-crystallographic symmetry (Millane,

1990). It has been shown, however, that HiO can be used for

phase extension for two-dimensional projections (Wu &

Spence, 2003). The HiO algorithm has also been applied to

two-dimensional monolayer crystals, by oversampling along

the reciprocal-lattice rods, and so greatly improving the

convergence of TEM cryomicroscopy data from proteins

(Spence et al., 2003). The atomicity constraint has also been

used by Elser (2003) in an iterative algorithm that picks up

atoms from the current density map.

Recently, a remarkably simple and effective method for

adding the atomicity constraint to an iterative algorithm was

developed by OszlaÂnyi & SuÈ to (2004). In that algorithm, by

iteratively reversing (¯ipping) the sign of the charge density in

regions where it lies below a small threshold, it was found that

a `support' function for point-like atoms can be found. This

charge-¯ipping algorithm can be considered as a special case

of the output±output variant of the HiO algorithm (Wu et al.,

2004). The algorithm assumes a real density in real space

(without, for example, spatially dependent absorption or

multiple scattering) and takes account of the small number of



negative values in the charge density, which result from

truncation of the structure factors in reciprocal space. It has

been successfully used to ®nd three-dimensional structures

using simulated X-ray diffraction data (OszlaÂnyi & SuÈ to,

2004). In our work, we have applied a modi®ed version of the

algorithm to experimental X-ray diffraction data. The main

modi®cation we have applied to the algorithm is to change the

way the threshold � is set. Instead of using a ®xed value of �,
we ¯ip a certain fraction 1ÿ �. Pixels of density are ranked in

order of magnitude from most positive to most negative, and

the 1ÿ � with the smallest density are identi®ed as falling

within our threshold. The sign of the density for these pixels,

which includes all negative values, is reversed (`¯ipped').

In the following, a brief description of the charge-¯ipping

algorithm is given, followed by a report of our experience with

structure solution of two crystals using experimental X-ray

diffraction data.

2. Phase-retrieval procedures

Given a set of experimentally observed moduli |Fobs(h)|, lattice

parameters and the space group of an unknown structure, the

®rst step is to merge equivalent re¯ections according to the

symmetry of the crystal. A set of random phases '(h) is then

generated consistent with Friedel's law: ÿ'(h) = '(ÿh).

Combining F(h) and '(h) and applying a Fourier transform to

this current set of structure factors, we can generate the ®rst

estimate of the charge density �(r). This estimate of �(r) is a

real function with both positive and negative values and with

symmetry P1. In the starting cycle, F(0) is set to 0, the integral

over the ®rst estimate of �(r) is therefore zero. This accounts

for the appearance of the negative values, in addition to the

effect of truncation of structure factors at the resolution limit.

The iterative Fourier transform algorithm for the kth iteration

is given below.

1. Sort �k(r) in descending order of magnitude and set a

ratio � < 1. Select m pixels with largest positive values, where

m = n� and n is the total number of pixels. These m pixels form

the current support estimate Sk(r), the boundaries of the

atoms. Charge ¯ipping is applied by retaining the values of

these m pixels and ¯ipping (reversing the sign of) all the rest:

�k�1�r� � �k�r� if r 2 Sk�r�
ÿ�k�r� if r =2 Sk�r�.

�
�1�

2. Fourier transform �k+1(r) to obtain Fk+1(h).

3. Replace resulting structure-factor moduli with measured

moduli |Fobs(r)|. Three types of re¯ections are distinguished

here: observed re¯ections h 2 Hobs; high-frequency re¯ections

h =2 Hobs beyond the resolution limit; and the 000 re¯ection:

Fk�1�h� �
jFobs�h�j exp�i'k� if h 2 Hobs

Fk�0� if h � 0

0 if h =2 Hobs and h 6� 0.

8<: �2�

4. Inverse Fourier transform of Fk+1(h) to obtain �k+1(r).

5. Go to step 1 with k replaced by (k + 1).

The best fraction � is found to lie around 0.2 for three-

dimensional crystals. The progress of the iterations can be

followed using a conventional residual R, calculated using the

moduli of the current estimate of the charge density and the

observed moduli:

R � P
h2Hobs

jjFk�h�j ÿ jFobs�h�jj
. P

h2Hobs

jFobs�h�j: �3�

We ®nd that, with an appropriate �, R decreases with iteration

number, with the attainment of a plateau being a sign of

convergence of the algorithm (see Fig. 1). The value of R can

then be further reduced by using a larger �, so that more pixels

are not ¯ipped, but note that this does not imply that a better

solution is being achieved, only that a smaller amount of

density is being ¯ipped. Since F(000) is usually not observed

and the scale of the charge-density map may vary, the de®ni-

tion of a threshold using a percentage � seems better than

using a ®xed parameter �. Indeed, we ®nd that R begins to

decrease almost immediately using � (see Fig. 1) rather than

having an induction period of 100 or more cycles with ®xed �
(OszlaÂnyi & SuÈ to, 2004).

Also shown in Fig. 1 is F(000) as a function of iteration

number. We ®nd, as also observed by OszlaÂnyi & SuÈ to (2004),

that achievement of the correct structure is signaled by a large

drop of F(000) to a constant value, and indeed the behavior of

F(000) might equally be used as a criterion for convergence to

the correct structure.

3. Structure determination using the iterative algorithm

Single crystal X-ray diffraction data collected in our labora-

tory (C. F. Bonneau & T. L. Groy, to be published) from

monoclinic hexabromobenzene (C6Br6) (P21=n, a = 8.381, b =

4.0192, c = 15.3939 AÊ , � = 92.674�, Z = 2) were used as input to

the iterative phasing algorithm. 4387 observed re¯ections, in a

sphere of resolution of about 0.8 AÊ (ÿ10� h� 10,ÿ5� k� 5

and ÿ19 � l � 19) were used to form 1355 unique re¯ections
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Figure 1
R and current estimation of F(000) versus iteration number for the C6Br6

structure solution with � initially equal to 0.185. After 240 iterations, � is
increased in increments of 0.05 to a ®nal value of 0.535.
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after merging using the given symmetry. We then imposed

symmetry again to these 1355 re¯ections to generate alto-

gether 4738 re¯ections. This was the starting set of experi-

mental data used to ®ll in a three-dimensional array with

dimension 21 � 11 � 39. All unobserved high-order re¯ec-

tions in the array but outside the sphere were set to zero, and

held at zero in the iterations. F(000) was also set to zero at the

beginning but updated with the current estimate at each

iteration. The density map was calculated using 0.4 AÊ pixels.

The parameter � used in the iteration was 0.185 until the

reconstruction converged. Fig. 2(a) shows the [010] projection

of the reconstructed charge-density map at the 240th iteration,

when the calculation has converged (little change in R). The

corresponding residual R is 0.145. Fig. 2(b) shows the same

projection with the charge-density map masked by the 24

highest density peaks. The molecules are clearly visible, the

peaks for the heavy atoms (Br) are about six times those for

the lighter atoms (C) as expected from the ratio of atomic

numbers (5.83) and interatomic distances are reasonable, so

we have essentially ®nished at this point.

In our tests on this structure, the algorithm always

converges quickly to the correct structure, usually in less than

50 iterations. Furthermore, every test converged to the correct

structure, independent of the (random) starting phases. These

random phases result in random origins of coordinates.

However, the resulting map is noisy and a number of smaller

peaks occur in the density map, so we seek a procedure for

reducing the background noise, so that structures of unknown

composition might be solved.

The following procedure works well. After the initial

plateau in R is reached, we increase � by 5% every ten

subsequent iterations until it reaches a value of 0.535. If we

examine the peaks, we ®nd that the positions and integral

charge density of the Br and C atoms are similar before and

after the change in � but the noise level is reduced.

If the smaller electron-density peaks are merely noise, they

should appear at random positions as the starting phases are

varied, so we further reduced noise by averaging the results of

eight re®nements (with different random starting phases),

referred to a common origin determined by maximizing the

overlap of the strongest peaks, as in Fig. 2. The largest

resulting noise peak in this average map was 60% of the

smallest C peak, but can be identi®ed as noise as follows. The

magnitude of each peak is determined by integrating over a

box of 3 � 3 � 3 pixels. For an atomic peak, the largest pixel

in the box is 0.10±0.12 of the integral, but in a noise peak the

largest pixel is about 0.05 of the integral (note that for a ¯at

distribution the largest peak is 1=27 = 0.037 of the integral).

Figure 2
(a) [010] projection of the C6Br6 charge-density map by the iterative charge-¯ipping algorithm at the 240th iteration, when R is 0.145. (b) Application of
an atomic mask to (a); only the 24 peaks with the highest density are selected and shown. (c) [010] projection of the charge-density map of C6Br6

obtained by averaging eight density maps starting from different random phases. (d) Application of an atomic mask to (c); only the 24 peaks with the
highest density are selected and shown. The plane of the molecules is inclined at approximately 25� to (010).



Speci®cally, the largest pixel in the largest noise peak is only

0.3 times the largest pixel in the smallest C peak.

Of course in this case we know the symmetry (P21=n is given

uniquely by extinctions) and the atomic peaks found by the

algorithm are observed to be closely related by symmetry. No

such pattern is discerned for the noise. Thus, for crystals with

symmetry higher than P1, the fact that symmetry is not used

can be turned to good advantage. As we do know the

symmetry in this case, we can ®nally use it to force the atomic

coordinates to conform to the symmetry. Atomic parameters

so determined are compared with the results of a conventional

re®nement (to R1 = 0.03) in Table 1. Atomic positions agree

within about 0.2 AÊ . Also listed are the relative peak heights.

The second crystal studied is orthorhombic SnBr4±dioxane

[Pbcn, a = 8.7678, b = 11.2927, c = 11.1746 AÊ , Z = 4, dioxane =

C4H8O2 (Bauer et al., 2002)]. Altogether 9385 intensities

within ÿ11 � h � 11, ÿ14 � k � 14 and ÿ14 � l � 14 were

measured, with the highest resolution at 0.8 AÊ . Data were

merged according to the symmetry of the crystal. The 1411

re¯ections were then used to generate 9794 observed inde-

pendent re¯ections. These re¯ections were then used to ®ll a

three-dimensional structure-factor array with dimension

23 � 29 � 29. Again, all the high-order re¯ections outside the

measured sphere and F(000) were set to zero. The parameter

� was set to 0.2. The program was repeatedly executed and we

found that about 80% of all runs converged, and then to the

correct structure (20 runs), after a maximum of 200 iterations.

Although the heavy and light atoms can be distinguished

based on their charge-density values, it is dif®cult to distin-

guish light atoms such as C and O with similar atomic number.

4. Discussion

Charge ¯ipping is a simple and easily implanted algorithm for

ab initio structure determination for crystals based on our tests

using experimental X-ray diffraction data. Unlike the HiO

algorithm, it does not require knowledge of the support in real

space, which (being the boundary of the atoms) is dif®cult to

realize experimentally at atomic resolution. The Shrinkwrap

algorithm similarly iteratively improves a support estimate

based on a ®rst guess from the autocorrelation function,

which, as the Patterson function, could perhaps also be used in

this case for a crystal, despite the lack of `oversampled' data.

In the charge-¯ipping iterative algorithm, the absence of the

support constraint is compensated for by using atomicity

(retention of large peaks). There have been previous attempts

to add atomicity constraints to the iterative algorithm, see, for

example, Elser (2003). Charge ¯ipping does seem to be the

best and simplest way to apply atomic constraints in an

iterative algorithm. A large F(000) in iterations is the sign of

divergence, since the charge-¯ipping algorithm fails to ®nd the

large `zero' area above which atomic peaks sit. Thus, a sharp

decrease of F(000) is also a good sign of convergence.

Meanwhile, since the constraints in the charge-¯ipping algor-

ithm (Fourier intensity and atomicity) are non-convex, no

rigorous theorems regarding convergence can be established.

The ¯ipping algorithm only works for data with atomic

resolution (OszlaÂnyi & SuÈ to, 2004). We have explored this

aspect further using the experimental SnBr4±dioxane data.

The program would still converge when the resolution was

reduced to 1 AÊ . However, the sharp drop in the R curve, which

is a sign of convergence, disappeared when the resolution was

reduced to 1.4 AÊ . To our surprise, however, some features can

still be seen in the reconstructed charge-density map, for

example the heavy Sn atoms can still be distinguished in this

lower-resolution charge-density map. Spurious peaks also

appear, which make the determination of lighter atoms

impossible. Recently, we have found that the charge-¯ipping

algorithm can also be applied to image reconstruction of a

non-periodic object, without atomic resolution (Wu et al.,

2004). In the present paper, the charge-¯ipping algorithm is

applied to two relatively small structures. We have extended

the calculations to signi®cantly larger structures with some

success. Although we used relative structure factors, we tried

and con®rmed that the usage of normalized structure factors is

better since the atomic peaks become sharper.

Unlike direct methods, the charge-¯ipping algorithm does

not require the scattering factors of the atoms to be known, or

indeed any chemical information. (Here we refer to the

algorithm we actually used, in which no normalized structure

factors are used. Otherwise, calculation of the normalized

structure factors requires cell content and scattering factors of

the atoms). The symmetry was used only in merging the

observed intensities and in reporting the ®nal result, not

within the algorithm. This means we only need to know the

symmetry of the intensity, which is always an invariant, no

matter how the origin moves. In this sense, compared to

existing direct phasing methods, it is more `ab initio' than

other algorithms in current use.

5. Conclusions

Two crystal structures have been solved ab initio using the

iterative charge-¯ipping algorithm, which imposes atomic

constraints in a simple way. Our modi®cation to the original

algorithm improves performance. In the reconstructed charge-

density map, light atoms can be distinguished from heavy ones,

which can be found at lower resolution. The operation of the

algorithm is compared to the related HiO algorithm.
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Table 1
Atomic coordinates in C6Br6 obtained by the charge-¯ipping algorithm
and in parentheses from a conventional re®nement.

d is the displacement between the two sets of coordinates in AÊ . N is the
integrated density in a box of 1.2 � 1.2 � 1.2 AÊ (27 pixels)

Atom x y z d N

Br(1) 0.76 (0.767) 0.83 (0.816) 0.128 (0.139) 0.18 6.5
Br(2) 0.39 (0.421) 0.58 (0.574) 0.204 (0.205) 0.26 6.3
Br(3) 0.15 (0.157) 0.22 (0.239) 0.059 (0.068) 0.17 6.3
C(1) 0.59 (0.614) 0.63 (0.635) 0.042 (0.058) 0.07 1.2
C(2) 0.46 (0.463) 0.50 (0.528) 0.096 (0.087) 0.18 1.2
C(3) 0.35 (0.354) 0.40 (0.391) 0.026 (0.029) 0.07 1.1
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